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VI. DISCUSSION

The main result of this investigation can be stated as

follows. If the rate of twist is relatively low and the anisot-

ropy relatively high, then the field can be thought of as

attaching itself to the structure of the medium as it propa-

gates through it, and it therefore rotates. This situation cor-

responds to a low value of v and the conclusion stated above

is evident from (34) due to the relative unimportance of the

cross terms of the transfer matrix. In general, however, the

twist generates polarization coupling and an alteration of

propagation constants.

Discontinuities perpendicular to the direction of propa-

gation can be handled. Computer calculation would gen-

erally be necessary, but marked simplification occurs in

special cases notably for a taper region for which explicit

formulas can be obtained.

A physical structure having the properties dealt with in

this paper is not hard to visualize. It could consist of layers

of a fabric in which warp and weft have markedly different

dielectric properties, each layer being oriented at an angle

with respect to the adjacent layer. Interesting speculation

on this matter is contained in a recent letter by Shelton. 3

Any degree of twist per unit wavelength is possible with

these structures but the range of anisotropy appears to be

limited. A polarizer having a modest improvement in fre-

quency bandwidth (corresponding to V2= 1/2) is feasible. The

frequency independent-relations (39) and (40) can also be

realized, but with a low anisotropy interesting polarization

properties would require an excessive thickness of material.

Finally it should be pointed out that this paper deals with

a one-dimensional problem. The lateral limitation of the

geometry by means of a waveguide or other boundary would

greatly complicate it.

t P. Shelton, “Comments on ‘polarization transformation in twisted
anisotropic media,’” IEEE Trans. Microwave Theory and Techniques

(Correspondence), vol. MTT-14, p. 579, November 1966.
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Abstract—A method is described of calculating automatically the

performance of junctions of rectangular waveguides including conduct-

ing cylinders of arbitrary shape. The only restriction is that the overall

problem should he effectively two-dimensional, i.e., the structure be uui-

form in some cross section. The one basic approximation made (which

could be removed) is shown to give useful results for the devices tested,

viz., for various shaped irises (indnctive and capacitive) and the 4-port

H-plane junctiou.

I. INTRODUCTION

I
N AN EARLIER PAPER [1], the authors described a

method of solving the problem of the hollow waveguide

of arbitrary shape, and indicated that the procedure

could be applied directly to the solution of a wide range of

waveguide discontinuity problems of engineering interest.

The object of this paper is to describe the application and to

give some typical results.
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As with the previous paper [I], the object is to enable a

wide class of problems to be solvable with the one method

and the one computer program. It should be emphasized that

the technique of this paper depends on being able to calcu-

late the cutoff frequencies of an arbitrarily shaped waveguide.

Other methods have been described [2], [3] besides that

used in thk paper, but it is not clear from published results

whether any of these is as automatic and rapid in computing.

The method can be applied directly to the analysis of a
2-, 3-, or m-port junction of rectangular waveguides contain-

ing arbitrarily shaped conducting structures. The waveguides

may have different dimensions, but the overall structure must

be uniform (i.e., have constant cross section) in one direc-
tion (either the “broad” or “narrow” transverse direction)

so that the resulting boundary-value problem is effectively

two-dimensional. Examples of such structures would include

the conducting post or iris (of any shaped cross section) in

rectangular waveguide, an offset or change of transverse

dimension in the rectangular waveguide, and for m-port

junctions the T, Y, and 4-port cross junctions. All these ex-

amples could be in the E plane or H plane.

The method used relies on analysis of the junction when

supporting pure standing waves, as used experimentally in

the “nodal-shift” or Weissfloch-Feenberg method of mea-
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surement [4] for a loss-free junction. The results given in-

volve just one basic approximation, corresponding to taking

a measurement with the short circuit and null detector close

to the junction. Results are obtained for a variety of geom-

etries, to verify the procedure, and are presented here. The

method could be extended to avoid the basic approximation.

II. THEORY

To simplify the presentation and discussion of the analy-

sis, we shall restrict ourselves to rectangular waveguides con-

taining discontinuities that are physically symmetrical about

the central transverse plane. The application to junctions

without this symmetry, or with more than two ports, should

be apparent later.

Our typical structure is shown in Fig. 1, and can represent

a cross section in either the E or H plane. The scattering

matrix is

()PT

7P’

and the reflection and transmission coefficients can be de-

scribed [5] in terms of the eigenvalues X1and &of the scatter-

ing matrix by

P = *(XI + AZ) = *(exp .@l + exp j%) (1)

~ = *(X1 — XJ = *(exp jOl — exp jOJ. (2)

The junction is presumed loss free, so that the eigenvalues

must lie on the unit circle, and the junction is described com-

pletely by two real numbers 0, and 0,. The eigenvectors (1, 1)

and (1, — 1) correspond to pure standing waves in the junc-

tion that are either symmetric or antisymmetric about the

junction center plane [5]. Figure 2 shows these standing-wave

patterns, giving the magnetic fields for an H plane discon-

tinuity. Similar patterns are shown in Fig. 3 of the electric

fields for an E plane discontinuity, If, either by field theory

or by experiment, we can find the positions of these two sets

of standing waves, we will know the eigenvalues, and hence

by (1) and (2) the elements, of the scattering matrix. Spe-

cifically we require the positions of two electric nulls that

can be established equidistant from the junction, but

sufficiently distant from the junction for evanescent fields to

be negligible.

For the H plane discontinuity of Fig. 2, there is no field

variation normal to the H plane; for the E plane discontinu-

ity of Fig. 3 there is a known variation [sin (mx/xO)] normal

to the E plane. The three-dimensional standing waves of

Fig. 2 or 3 are equivalent, then, to the fields of a suitable

/)’1 A’2

Fig. 2. Magnetic fields for the even and odd standing waves of an
H plane discontinuity in rectangular waveguide.
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Fig. 3. Electric fields for the even and odd standing waves of an
E plane discontinuity in rectangular waveguide.
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Fig. 4. Waveguide cross section of “equivalent problem/’ with
electric walls at 1 and 1’, 2 and 2’, etc.

mode present in a uniform ridged waveguide of cross section

as shown in Fig. 4. For an H plane discontinuity, with mag-

netic fields as in Fig. 2, and with short circuits at A 1, A ~’,

the fields are identical to a TM mode of the ridged guide in

Fig. 4, at cutoff. For an E plane discontinuity, the fields are

identical to a TE mode of the same ridged guide, operating

at the frequency for which its guide wavelength equals the

cutoff wavelength of our original rectangular waveguide.

In either case we have the two-dimensional boundary-

value problem of finding the wall positions (A ~ and Al’, or

for more accuracy An and An’) that support the particular

wave at a particular frequency. The converse problem, of

finding the cutoff frequency for any particular wall or short-
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Fig. 5. Shunt susceptanceof a thin inductive iris, with finite
difference and approximate analytic solutions.

circuit position, is precisely that solved by the authors [1].

In this method, the dominant TE or TM mode of an arbi-

trary shaped waveguide is solved automatically, simply by

prescribing the shape geometrically, via a few lines of Auto-

code instruction, to a computer program.

The procedure used to solve any given waveguide struc-

ture is as follows. The cutoff wavelengths of the appropriate

TE or TM mode are calculated for a number of cross sec-

tions, bounded by the electric walls 1, 1’; 2, 2’; etc. Each

solution gives a wavelength at which the standing wave

pattern would be established, and hence gives one eigen-

value for the scattering matrix at this same operating wave-

length. From results of calculations of a range of cross

sections, with short circuits at various distances from the

junction, we obtain the two eigenvalues, and hence a com-

plete description of the junction, over a band of frequencies.

Because the computer program referred to solves only

for the dominant TE or TM mode, we are limited to analyz-

ing our waveguide junction with the electric nulls nearest to

the discontinuity. This introduces the only basic approxima-

tion in the present procedure. It could be removed by

generalizing the computer program to deal with higher

modes in the waveguide. However, as will be seen in the

next section, quite useful results are obtained even with

this limitation.

For a junction with the physical symmetry assumed in this

section, we can economize in our calculation. The computer

program for the calculation of the arbitrarily shaped wave-

guide can “mix” the boundary conditions [6], to simulate

the electric or magnetic wall of any symmetry plane, and so

calculate separately the symmetric and antisymmetric modes.

This means that in the above procedure it is necessary to

consider only one half or side of the symmetric junction—

from O to 1, 2, 3, etc. of Fig. 4. The calculations with electric

and magnetic walls at the symmetry plane will result in an

associated pair of eigenvalues exp(jO1) and exp@z), and hence

the scattering matrix, at some frequency.

The analysis of a nonsymmetric 2-port junction would

apply in the same way, just as the nodal-shift experiment

would apply. However, the simplicity of description via a
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Fig. 6. Shunt susceptanceof a thin capacitive iris, with finite
difference and approximate analytic solutions.

scattering matrix with known eigenvectors is lost, as is the

advantage of having to analyze only one half of the junction.

For simplicity, the preceding theory has been presented for
a 2-port device. The procedure can, however, apply equally

to m-port devices (within the same geometric restrictions of

shape given in the Introduction). This application is illus-

trated in the next section, when considering a 4-port H-plane

junction.

III. RESULTS

In order to verify the theory and to obtain some estimate

of the accuracy which may be achieved, a number of prob-

lems have been solved. In all cases the results obtained using

the finite-difference technique have been compared with

other existing theories or experimental data,

A. Thin Irises

The first type of discontinuity to be considered was that

of thin irises in a rectangular waveguide. Figure 5 shows the

equivalent circuit parameter as a function of frequency for

two symmetrical inductive irises. The points shown for com-

parison were taken from Marcuvitz [7], who estimates the

accuracy of his results to be within 1 percent for a/A< 1, but

greater than 1 percent for a/h> 1. Our results agree to within
about 2 percent for a/A< 1. The susceptance of two sym-

metrical capacitive irises was calculated next, and the re-

sults, compared with those of Montgomery, Dicke, and

Purcell [8], are plotted in Fig. 6. The results for both types of

thin irises show good agreement for frequencies within the

usual range of interest, i.e., for frequencies below the cutoff
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Fig. 7. Magnitude and phase of reflection coefficient of square inductive irises (discontinuities in the H plane)
with results of theory and experiment.

frequency of the next higher mode. For higher frequencies

the discrepancy increases as expected, because the short cir-

cuit has to be placed closer to the discontinuity and the error

due to our fundamental approximation becomes increasingly

significant.

B. Thick Irises

Secondly, we considered two types of thick irises in rec-

tangular waveguides. Figure 7(a) and (b) shows the magni-

tude and phase angle of the reflection coefficient due to

square inductive irises of various sizes. The experimental

points were obtained using the nodal-shift method, but

examining just the two standing wave situations of Fig. 2.

The symmetrically placed short circuit and standing-wave

indicator probe then give the scattering matrix eigenvalues

directly. Although the agreement of Fig. 7(a) and (b) may

at first glance not appear very good, it should be noted that

a fairly expanded scale has been used and that in most cases

the finite-difference results are straddled by the experimental

points. In general, the discrepancy between the calculated

curve and the average of the experimental data is no worse

than 2 or 3 percent.

Figure 8 shows the voltage standing-wave ratio (VSWR)

as a function of frequency due to a single half-round induc-

tive obstacle with R/a =2/9. The curve shown for compari-
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Fig. 8. Single half-round inductive obstacle, by finite
difference and by exact analytic methods.

son is an approximately linear interpolation between two

curves given by Kerns [9] for R/a= 0.20 and R/a= 0.24.

Again the two results agree to within a few percent. In par-

ticular, for q’~ = 0.7162, Kerns obtains an accurate value

of 2.1125 for VSWR, whereas the finite-difference calcula-

tion resulted in a value of 2.15, an error of 1.7 percent.
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C. The 4-Port H-Plane Junction

Finally, to illustrate the application to many-port junctions,

we calculated the scattering matrix eigenvalues for the

4-port H-plane junction of rectangular waveguides. The

results are given in Fig. 9(a), (b), (c), and again show very

good agreement with the experimental results given by

Davies [10]. It might be interesting to note here that for

00>0° in Fig. 9(a), it was necessary to place the short circuits

inside the junction and thus to find the cutoff frequency of

the TMII mode in the resulting square waveguide. Even so,

the results for this range show excellent agreement with

experiment.

Because of the 90° rotation symmetry of the junction, it

is possible to calculate separately each eigenvalue, by con-

sidering just one short-circuited waveguide. By calculating

the waveguide with electric walls along the diagonal sym-

metry lines [see inset to Fig. 9(b)], we obtain the eigenvalue

exp(@) with eigenvector (1, – 1, 1, – 1). Similarly, we ob-

tain the other eigenvalues from magnetic walls [Fig. 9(a)] or

magnetic and electric walls [Fig. 9(c)] along the symmetry

lines. In each case, the economized shape to be calculated

on the computer is ABCD(E).

IV. CONCLUSIONS

It has been shown that useful results can be calculated

in a routine manner for a wide range of waveguide discon-

tinuity and junction problems. The errors, which were rarely

greater than 3 percent for the examples calculated, could

clearly be reduced by calculating modes above the dominant

in the related waveguide problem. This could be done by

the finite-difference method. still in an automatic and rou-
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Fig. 9. Arguments of the scattering matrix eigenvalues for the 4-port
H-plane junction. In the insets, electric walls are denoted by full
lines and magnetic walls by broken lines.

tine manner, although computing time would increase

rather rapidly, for two reasons, Firstly, the method of over-

relaxation could still be used, continually subtracting the

dominant mode(s) that have already been calculated, and

using the recursive definition of eigenvalues. In addition, the

size of waveguide to be calculated would grow as the higher

accuracy is being sought, corresponding to the short cir-

cuits being a number of half-guide wavelengths from the

iunction. For these reasons. high accuracv would be ex~en -. . ,“ .-. – -..
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sive in computing time. This is, however, something of an

open question as so few structures permit alternative, ana-

lytic solutions beyond first-order perturbation.

This method is therefore proffered as a versatile and auto-

matic procedure for analyzing, with moderate accuracy, this

class of waveguide problems.
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The Green’s Dyadic for Radiation in a

Bounded Simple Moving Medium

Y. J. SETO,

Absfract—The Woolies here show that the wave equation for electro-

magnetic wave propagation in an isotropic and nniforrnly moving medium

is solvable by the separation method in four coordinate systems. Solutions

in the form of complete sets of eigenfunctions are possible for problems

where boundary surfaces are presented. A Green’s dyadic for finite or

semi-infinite domain problems involving sources in the moving medhrm has

been formulated through vector operation on the eigenfunction solutions

of the homogeneous wave equation. The case of electromagnetic waves

excited by a current loop, immersed in a moving medium, and coofmed

by a circular cylindrical waveguide, was examined. The electric and nmg-

netic field intensities in such a wavegnide were compared with those

obtained through a different approach. The Green’s dyadic for electro-

~gnetic waves in an infinite domain moving medium was shown to be

obtainable from tbe finite domain Green’s dyadic through a limiting

process.

INTRODUCTION

T

HE PROBLEM OF electromagnetic wave propaga-

tion in a moving medium has gained a renewed inter-

est in recent years. A number of studies has been re-

ported on the subject involving a bounded or an unbounded
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moving medium. For radiation problems, Lee and Papas*

have derived a Green’s f~ction which is adequate for

sources in an infinite domain moving medium. Compton

and Tai2 also have derived an infinite domain Green’s dyadic

for sources in a moving medium which has a different form

from that obtained by Lee and Papas. In principle, the

infinite domain Green’s function can be used to obtain the

field in a finite domain if one retains the surface integral in

the integral representation of the field. In practice, however,

evaluation of the surface integral is not a simple task. For

most boundary value problems involving sources inside the

boundaries, the boundary conditions are usually either

homogeneous Dirichlet or homogeneous Neumann, and

seldom involve both homogeneous Dirichlet and homo-

geneous Neumann simultaneously on the same boundary

surface. Any inhomogeneous boundary condition requires

a priori knowledge of the surface charge density or surface

current density before the surface integral can be evaluated.

Such knowledge is usually not given in the statements of the

problem.

To avoid such difficulties, a different approach is sug-

gested in this paper. A study to better understand the finite

or semi-infinite domain free-wave solutions is carried out.

1K. S. H. Lee and C. H. Papas, “Electromagnetic radiation in the
presence of simple moving medium,” J. Math. Phys., vol. 5, no. 12,
pp. 1668-1672.1964.

2R. T. Compton, Jr., and C. T. Tai, “Radiation from harmonic
sources in a uniformly moving medium,” IEEE Trans. Antennas and
Propagation, vol. AP-13, pp. 574-577, July 1965.


