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VI. DiscussioN

The main result of this investigation can be stated as
follows. If the rate of twist is relatively low and the anisot-
ropy relatively high, then the field can be thought of as
attaching itself to the structure of the medium as it propa-
gates through it, and it therefore rotates. This situation cor-
responds to a low value of » and the conclusion stated above
is evident from (34) due to the relative unimportance of the
cross terms of the transfer matrix. In general, however, the
twist generates polarization coupling and an alteration of
propagation constants.

Discontinuities perpendicular to the direction of propa-
gation can be handled. Computer calculation would gen-
erally be necessary, but marked simplification occurs in
special cases notably for a taper region for which explicit
formulas can be obtained.

A physical structure having the properties dealt with in
this paper is not hard to visualize. It could consist of layers
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of a fabric in which warp and weft have markedly different
dielectric properties, each layer being oriented at an angle
with respect to the adjacent layer. Interesting speculation
on this matter is contained in a recent letter by Shelton.?
Any degree of twist per unit wavelength is possible with
these structures but the range of anisotropy appears to be
limited. A polarizer having a modest improvement in fre-
quency bandwidth (corresponding to »2=1/2) is feasible. The
frequency independent-relations (39) and (40) can also be
realized, but with a low anisotropy interesting polarization
properties would require an excessive thickness of material.

Finally it should be pointed out that this paper deals with
a one-dimensional problem. The lateral limitation of the
geometry by means of a waveguide or other boundary would
greatly complicate it.

3 P, Shelton, “Comments on ‘polarization transformation in twisted
anisotropic media,” > IEEE Trans. Microwave Theory and Technigues
(Correspondence), vol. MTT-14, p. 579, November 1966.

The Numerical Solution of Rectangular Waveguide
Junctions and Discontinuities of Arbitrary
Cross Section

CORNELIS A. MUILWYK, STUDENT MEMBER, IEEE, AND J. B. DAVIES

Abstract—A method is described of calculating automatically the
performance of junctions of rectangular waveguides including conduct-
ing cylinders of arbitrary shape. The only restriction is that the overall
problem should be effectively two-dimensional, i.e., the structure be uni-
form in some cross section. The one basic approximation made (which
could be removed) is shown to give useful results for the devices tested,
viz., for various shaped irises (inductive and capacitive) and the 4-port
H-plane junction.

1. INTRODUCTION

N AN EARLIER PAPER (1], the authors described a
J:[ method of solving the problem of the hollow waveguide

of arbitrary shape, and indicated that the procedure
could be applied directly to the solution of a wide range of
waveguide discontinuity problems of engineering interest.
The object of this paper is to describe the application and to
give some typical results.
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As with the previous paper [1], the object is to enable a
wide class of problems to be solvable with the one method
and the one computer program. It should be emphasized that
the technique of this paper depends on being able to calcu-
late the cutoff frequencies of an arbitrarily shaped waveguide.
Other methods have been described [2], [3] besides that
used in this paper, but it is not clear from published results
whether any of these is as automatic and rapid in computing.

The method can be applied directly to the analysis of a
2-, 3-, or m-port junction of rectangular waveguides contain-
ing arbitrarily shaped conducting structures. The waveguides
may have different dimensions, but the overall structure must
be uniform (i.e., have constant cross section) in one direc-
tion (either the “broad” or “narrow” transverse direction)
so that the resulting boundary-value problem is effectively
two-dimensional, Examples of such structures would include
the conducting post or iris (of any shaped cross section) in
rectangular waveguide, an offset or change of transverse
dimension in the rectangular waveguide, and for m-port
junctions the T, Y, and 4-port cross junctions. All these ex-
amples could be in the E plane or H plane.

The method used relies on analysis of the junction when
supporting pure standing waves, as used experimentally in
the “nodal-shift” or Weissfloch-Feenberg method of mea-
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Fig. 1. Typical rectangular waveguide with

symmetrical discontinuity.

surement [4] for a loss-free junction. The results given in-
volve just one basic approximation, corresponding to taking
a measurement with the short circuit and null detector close
to the junction. Results are obtained for a variety of geom-
etries, to verify the procedure, and are presented here. The
method could be extended to avoid the basic approximation.

II. THEORY

To simplify the presentation and discussion of the analy-
sis, we shall restrict ourselves to rectangular waveguides con-
taining discontinuities that are physically symmetrical about
the central transverse plane. The application to junctions
without this symmetry, or with more than two ports, should
be apparent later.

Our typical structure is shown in Fig. 1, and can represent
a cross section in either the E or H plane. The scattering

< 7 >
7
4

and the reflection and transmission coefficients can be de-
scribed [5] in terms of the eigenvalues \; and A, of the scatter-
ing matrix by
p =31+ N2) = 3(exp j01 + exp jbs)
7 = 5(A\1 — X2) = $(exp j6, — exp j%).

1)
@)

The junction is presumed loss free, so that the eigenvalues
must lie on the unit circle, and the junction is described com-

pletely by two real numbers 6; and §,. The eigenvectors (1, 1)

and (1, —1) correspond to pure standing waves in the junc-
tion that are either symmetric or antisymmetric about the
junction center plane [5]. Figure 2 shows these standing-wave
patterns, giving the magnetic fields for an H plane discon-
tinuity. Similar patterns are shown in Fig. 3 of the electric
fields for an E plane discontinuity. If, either by field theory
or by experiment, we can find the positions of these two sets
of standing waves, we will know the eigenvalues, and hence
by (1) and (2) the elements, of the scattering matrix. Spe-
cifically we require the positions of two electric nulls that
can be established equidistant from the junction, but
sufficiently distant from the junction for evanescent fields to
be negligible.

For the H plane discontinuity of Fig. 2, there is no field
variation normal to the H plane; for the E plane discontinu-
ity of Fig. 3 there is a known variation [sin (xx/x,)] normal
to the E plane. The three-dimensional standing waves of
Fig. 2 or 3 are equivalent, then, to the fields of a suitable
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Fig. 2. Magnetic fields for the even and odd standing waves of an
H plane discontinuity in rectangular waveguide.
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Fig. 3. Electric fields for the even and odd standing waves of an
E plane discontinuity in rectangular waveguide.
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Fig. 4. Waveguide cross section of “‘equivalent problem,” with
electric walls at 1 and 1/, 2 and 2, etc.

mode present in a uniform ridged waveguide of cross section
as shown in Fig. 4. For an H plane discontinuity, with mag-
netic fields as in Fig. 2, and with short circuits at A;, 4,,
the fields are identical to a TM mode of the ridged guide in
Fig. 4, at cutoff. For an E plane discontinuity, the fields are
identical to a TE mode of the same ridged guide, operating
at the frequency for which its guide wavelength equals the
cutoff wavelength of our original rectangular waveguide.
In either case we have the two-dimensional boundary-
value problem of finding the wall positions (4, and A4/, or
for more accuracy 4, and A4,’) that support the particular
wave at a particular frequency. The converse problem, of
finding the cutoff frequency for any particular wall or short-
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Fig. 5. Shunt susceptance of a thin inductive iris, with finite
difference and approximate analytic solutions.

circuit position, is precisely that solved by the authors [1].
In this method, the dominant TE or TM mode of an arbi-
trary shaped waveguide is solved automatically, simply by
prescribing the shape geometrically, via a few lines of Auto-
code instruction, to a computer program,

The procedure used to solve any given waveguide struc-
ture is as follows. The cutoff wavelengths of the appropriate
TE or TM mode are calculated for a number of cross sec-
tions, bounded by the electric walls 1, 1’; 2, 2’; etc. Each
solution gives a wavelength at which the standing wave
pattern would be established, and hence gives one eigen-
value for the scattering matrix at this same operating wave-
length. From results of calculations of a range of cross
sections, with short circuits at various distances from the
junction, we obtain the two eigenvalues, and hence a com-
plete description of the junction, over a band of frequencies.

Because the computer program referred to solves only
for the dominant TE or TM mode, we are limited to analyz-
ing our waveguide junction with the electric nulls nearest to
the discontinuity. This introduces the only basic approxima-
tion in the present procedure. It could be removed by
generalizing the computer program to deal with higher
modes in the waveguide. However, as will be seen in the
next section, quite useful results are obtained even with
this limitation.

For a junction with the physical symmetry assumed in this
section, we can economize in our calculation. The computer
program for the calculation of the arbitrarily shaped wave-
guide can “mix” the boundary conditions [6], to simulate
the electric or magnetic wall of any symmetry plane, and so
calculate separately the symmetric and antisymmetric modes.
This means that in the above procedure it is necessary to
consider only one half or side of the symmetric junction—
from O to 1, 2, 3, etc. of Fig. 4. The calculations with electric
and magnetic walls at the symmetry plane will result in an
associated pair of eigenvalues exp(j9,) and exp(j8,), and hence
the scattering matrix, at some frequency.

The analysis of a nonsymmetric 2-port junction would
apply in the same way, just as the nodal-shift experiment
would apply. However, the simplicity of description via a
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Fig. 6. Shunt susceptance of a thin capacitive iris, with finite
difference and approximate analytic solutions.

scattering matrix with known eigenvectors is lost, as is the
advantage of having to analyze only one half of the junction.

For simplicity, the preceding theory has been presented for
a 2-port device. The procedure can, however, apply equally
to m-port devices (within the same geometric restrictions of
shape given in the Introduction). This application is illus-
trated in the next section, when considering a 4-port H-plane
junction.

TII. RESULTS

In order to verify the theory and to obtain some estimate
of the accuracy which may be achieved, a number of prob-
lems have been solved. In all cases the results obtained using
the finite-difference technique have been compared with
other existing theories or experimental data.

A. Thin Irises

The first type of discontinuity to be considered was that
of thin irises in a rectangular waveguide. Figure 5 shows the
equivalent circuit parameter as a function of frequency for
two symmetrical inductive irises. The points shown for com-
parison were taken from Marcuvitz [7], who estimates the
accuracy of his results to be within 1 percent for a/A<1, but
greater than 1 percent for a/A> 1. Our results agree to within
about 2 percent for a/A<1. The susceptance of two sym-
metrical capacitive irises was calculated next, and the re-
sults, compared with those of Montgomery, Dicke, and
Purcell [8], are plotted in Fig. 6. The results for both types of
thin irises show good agreement for frequencies within the
usual range of interest, i.e., for frequencies below the cutoff
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Fig. 7. Magnitude and phase of reflection coefficient of square inductive irises (discontinuities in the H plane)
with results of theory and experiment.

frequency of the next higher mode. For higher frequencies
the discrepancy increases as expected, because the short cir-
cuit has to be placed closer to the discontinuity and the error
due to our fundamental approximation becomes increasingly
significant.

B. Thick Irises

Secondly, we considered two types of thick irises in rec-
tangular waveguides. Figure 7(a) and (b) shows the magni-
tude and phase angle of the reflection coefficient due to
square inductive irises of various sizes. The experimental
points were obtained using the nodal-shift method, but
examining just the two standing wave situations of Fig. 2.
The symmetrically placed short circuit and standing-wave
indicator probe then give the scattering matrix eigenvalues
directly. Although the agreement of Fig. 7(a) and (b) may
at first glance not appear very good, it should be noted that
a fairly expanded scale has been used and that in most cases
the finite-difference results are straddled by the experimental
points. In general, the discrepancy between the calculated
curve and the average of the experimental data is no worse
than 2 or 3 percent.

Figure 8 shows the voltage standing-wave ratio (VSWR)
as a function of frequency due to a single half-round induc-
tive obstacle with R/a=2/9. The curve shown for compari-
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Fig. 8. Single half-round inductive obstacle, by finite
difference and by exact analytic methods.

son is an approximately linear interpolation between two
curves given by Kerns [9] for R/a=0.20 and R/a=0.24.
Again the two results agree to within a few percent. In par-
ticular, for a/A=0.7162, Kerns obtains an accurate value
of 2.1125 for VSWR, whereas the finite-difference calcula-
tion resulted in a value of 2.15, an error of 1.7 percent.
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C. The 4-Port H-Plane Junction

Finally, to illustrate the application to many-port junctions,
we calculated the scattering matrix eigenvalues for the
4-port H-plane junction of rectangular waveguides. The
results are given in Fig. 9(a), (b), (¢), and again show very
good agreement with the experimental results given by
Davies [10]. It might be interesting to note here that for
#o,>0° in Fig. 9(a), it was necessary to place the short circuits
inside the junction and thus to find the cutoff frequency of
the TMy; mode in the resulting square waveguide. Even so,
the results for this range show excellent agreement with
experiment.

Because of the 90° rotation symmetry of the junction, it
is possible to calculate separately each eigenvalue, by con-
sidering just one short-circuited waveguide. By calculating
the waveguide with electric walls along the diagonal sym-
metry lines [see inset to Fig. 9(b)], we obtain the eigenvalue
exp(j8s) with eigenvector (1, —1, 1, —1). Similarly, we ob-
tain the other eigenvalues from magnetic walls [Fig. 9(a)] or
magnetic and electric walls [Fig. 9(c)] along the symmetry
lines. In each case, the economized shape to be calculated
on the computer is ABCD(E).

1V. CONCLUSIONS

It has been shown that useful results can be calculated
in a routine manner for a wide range of waveguide discon-
tinuity and junction problems. The errors, which were rarely
greater than 3 percent for the examples calculated, could
clearly be reduced by calculating modes above the dominant
in the related waveguide problem. This could be done by
the finite-difference method, still in an automatic and rou-
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Fig. 9. Arguments of the scattering matrix eigenvalues for the 4-port
H-plane junction. In the insets, electric walls are denoted by full
lines and magnetic walls by broken lines.

tine manner, although computing time would increase
rather rapidly, for two reasons, Firstly, the method of over-
relaxation could still be used, continually subtracting the
dominant mode(s) that have already been calculated, and
using the recursive definition of eigenvalues. In addition, the
size of waveguide to be calculated would grow as the higher
accuracy is being sought, corresponding to the short cir-
cuits being a number of half-guide wavelengths from the
junction. For these reasons, high accuracy would be expen-
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sive in computing time. This is, however, something of an
open question as so few structures permit alternative, ana-
Iytic solutions beyond first-order perturbation.

This method is therefore proffered as a versatile and auto-
matic procedure for analyzing, with moderate accuracy, this
class of waveguide problems.
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The Green’s Dyadic for Radiation in a
Bounded Simple Moving Medium

Y. J. SETO, MEMBER, 1EEE

Abstract—The studies here show that the wave equation for electro-
magnetic wave propagation in an isotropic and uniformly moving medium
is solvable by the separation method in four coordinate systems. Solutions
in the form of complete sets of eigenfunctions are possible for problems
where boundary surfaces are presented. A Green’s dyadic for finite or
semi-infinite domain problems involving sources in the moving medium has
been formulated through vector operation on the eigenfunction solutions
of the homogeneous wave equation. The case of electromagnetic waves
excited by a current loop, immersed in a moving medium, and confined
by a circular cylindrical waveguide, was examined. The electric and mag-
netic field intensities in such a waveguide were compared with those
obtained through a different approach. The Green’s dyadic for electro-
magnetic waves in an infinite domain moving medium was shown to be
obtainable from the finite domain Green’s dyadic through a limiting
process.

INTRODUCTION

HE PROBLEM OF electromagnetic wave propaga-
Ttion in a moving medium has gained a renewed inter-
est in recent years. A number of studies has been re-
ported on the subject involving a bounded or an unbounded
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moving medium. For radiation problems, Lee and Papas!
have derived a Green’s function which is adequate for
sources in an infinite domain moving medium. Compton
and Tai? also have derived an infinite domain Green’s dyadic
for sources in a moving medium which has a different form
from that obtained by Lee and Papas. In principle, the
infinite domain Green’s function can be used to obtain the
field in a finite domain if one retains the surface integral in
the integral representation of the field. In practice, however,
evaluation of the surface integral is not a simple task. For
most boundary value problems involving sources inside the
boundaries, the boundary conditions are usually either
homogeneous Dirichlet or homogeneous Neumann, and
seldom involve both homogeneous Dirichlet and homo-
geneous Neumann simultaneously on the same boundary
surface. Any inhomogeneous boundary condition requires
a priori knowledge of the surface charge density or surface
current density before the surface integral can be evaluated.
Such knowledge is usually not given in the statements of the
problem.

To avoid such difficulties, a different approach is sug-
gested in this paper. A study to better understand the finite
or semi-infinite domain free-wave solutions is carried out.

1 K. S. H. Lee and C. H. Papas, “Electromagnetic radiation in the
presence of simple moving medium,” J. Math. Phys., vol. 5, no. 12,
pp. 1668-1672, 1964.

2R, T. Compton, Jr., and C. T. Tai, *“Radiation from harmonic

sources in a uniformly moving medium,” IEEE Trans. Antennas and
Propagation, vol. AP-13, pp. 574-5717, July 1965.



